Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Microbiol Spectr ; 10(1): e0116921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019692

RESUMO

Seborrheic dermatitis (SD) is a common, chronic, and relapsing skin disease. The roles of Malassezia spp. in the pathogenesis of SD are still not clear due to the lack of direct evidence for the existence of hyphae within affected skin tissues. We set out to elucidate if Malassezia mycelium contributes to the onset and development of SD and if Malassezia mycelium is correlated with the clinical severity of SD patients. We detected Malassezia hyphae in patients with SD using potassium hydroxide (KOH) and calcofluor white (CFW) staining. Fluorescent microscopy was performed for the analysis of fungal cell wall and morphological characteristics of Malassezia under CFW staining. Culture growth in modified Dixon agar was used for DNA extraction and sequencing, and Malassezia species were confirmed by a sequencing data BLAST search against the NCBI database. We demonstrated that Malassezia hyphae were positively correlated with the clinical severity of SD patients (P = 3.1738 × 10-11). All the patients responded well to antifungal treatment. There is no significant difference for species dominance across the variant groups. However, the exact molecular mechanisms of how Malassezia spp. affect SD need to be further explored. The results show that Malassezia spp. in the hyphal stage are restricted to SD patients compared with healthy controls, suggesting that the presence of Malassezia hyphae contributes to the pathogenesis of SD. The results highlight the importance of the antifungal therapy for the future treatment of SD patients. IMPORTANCE Our results support the proposal that the hyphal form of Malassezia could be one of the pathogenic factors that contribute to SD, which has been previously less well studied. This clinical observation paves the way for further investigations of the molecular mechanisms of Malassezia hyphal pathogenicity in SD.


Assuntos
Dermatite Seborreica/microbiologia , Dermatomicoses/microbiologia , Hifas/crescimento & desenvolvimento , Malassezia/isolamento & purificação , Adulto , Antifúngicos/uso terapêutico , Dermatite Seborreica/tratamento farmacológico , Dermatomicoses/tratamento farmacológico , Feminino , Humanos , Hifas/efeitos dos fármacos , Hifas/genética , Hifas/isolamento & purificação , Malassezia/efeitos dos fármacos , Malassezia/genética , Malassezia/crescimento & desenvolvimento , Masculino , Pessoa de Meia-Idade , Pele/microbiologia
2.
Mycoses ; 64(7): 716-720, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33759254

RESUMO

BACKGROUND: Malassezia spp. antifungal susceptibility testing (AFST) capacities are limited by the lack of efficient and standardised AFST procedure, mainly because of the fastidious cultivation of these yeast. OBJECTIVES: This study aimed to compare the FastFung broth (FFB) to modified Dixon broth (mDIXB) for the in vitro AFST of Malassezia spp. Fluconazole, ketoconazole, voriconazole and terbinafine MICs against a 19 Malassezia strains, including 6 M furfur, 4 M pachydermatis, 5 M sympodialis and 4 M slooffiae. METHODS: The essential agreement (EA) between the two assays, and the intra- and inter-laboratory agreement of each assay were assessed. RESULTS: The MIC data obtained in our study were comparable to those reported in the literature. FFB showed to enhance Malassezia growth and displayed 100% (±2-fold dilution) EAs demonstrating similar performances to mDIXB. In addition, the MIC data obtained by using the FFB were reproducible between laboratories with EAs ranging from 94.7% to 100%. CONCLUSIONS: Therefore, FFB is a suitable alternative to mDXB for Malassezia spp. AFST.


Assuntos
Malassezia/crescimento & desenvolvimento , Antifúngicos/farmacologia , Dermatomicoses/tratamento farmacológico , Humanos , Laboratórios , Malassezia/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos
3.
Med Mycol ; 59(7): 683-693, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-33369664

RESUMO

The genus Malassezia is part of the normal skin mycobiota of a wide range of warm-blooded animals. In this genus, M. cuniculi is the only species described from rabbits. However, Malassezia species are rarely studied in lagomorphs. In the present study, the presence of Malassezia was assessed in samples from the external ear canal of healthy rabbits of different breeds. Cytological and culture techniques, Sanger sequencing, and Next-generation sequencing (NGS) were used to describe the ear mycobiota in the samples. Although no growth was observed in the cultured plates, cytological examination revealed the presence of round cells similar to those of Malassezia yeasts. For metagenomics analysis, the D1/D2 domain of the large subunit of the ribosomal DNA (LSU rDNA) was PCR amplified and the resulting reads were mapped against a custom-made cured database of 26S fungal sequences. NGS analysis revealed that Basidiomycota was the most abundant phylum in all the samples followed by Ascomycota. Malassezia was the most common genus presenting the highest abundance in the external ear canal. Malassezia phylotype 131 and M. cuniculi were the main sequences detected in the external auditory canal of rabbits. The study included both lop-eared and erect-eared rabbits and no differences were observed in the results when comparing both groups. This is the first attempt to study the external ear canal mycobiome of rabbits of different breeds using NGS. LAY SUMMARY: In the present study, the presence of Malassezia was assessed in samples from the external ear canal of healthy rabbits of different breeds. Cytological and culture techniques, Sanger sequencing, and Next-generation sequencing (NGS) were used to describe the ear mycobiota in the samples.


Assuntos
Cruzamento , Meato Acústico Externo/microbiologia , Malassezia/genética , Micobioma/genética , Animais , DNA Ribossômico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Malassezia/classificação , Malassezia/crescimento & desenvolvimento , Metagenômica , Coelhos
4.
Med Mycol ; 59(2): 210-213, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32785575

RESUMO

Malassezia restricta and Malassezia globosa are lipid dependent commensal yeasts associated with dandruff. Antifungal actives such as zinc pyrithione are commonly used in antidandruff shampoos, although their efficacy is not clearly demonstrated. In this study, we assessed the efficacy of antifungal treatments on scalp Malassezia via a combination of culturomic and genomic detection methods. Zinc pyrithione inhibited Malassezia growth at low minimum inhibitory concentrations (MICs). In a longitudinal pilot study, quantitative polymerase chain reaction (qPCR) analysis showed a decrease in M. restricta on the scalp after zinc pyrithione treatment. These findings validate the antifungal efficacy of zinc pyrithione as a dandruff treatment. LAY ABSTRACT: Malassezia yeasts are associated with dandruff and seborrheic dermatitis. Zinc pyrithione is effective against Malassezia growth in vitro and when tested on human skin as a shampoo. These findings will be useful for investigating the role of Malassezia in skin microbiome intervention studies.


Assuntos
Antifúngicos/farmacologia , Malassezia/efeitos dos fármacos , Malassezia/crescimento & desenvolvimento , Compostos Organometálicos/farmacologia , Piridinas/farmacologia , Couro Cabeludo/efeitos dos fármacos , Pele/efeitos dos fármacos , Simbiose/efeitos dos fármacos , Adulto , Idoso , Estudos de Coortes , Humanos , Estudos Longitudinais , Malassezia/classificação , Malassezia/genética , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Projetos Piloto , Couro Cabeludo/microbiologia , Pele/microbiologia , Sabões/química , Sabões/farmacologia , Inquéritos e Questionários , Adulto Jovem
5.
Sci Rep ; 10(1): 4860, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184419

RESUMO

The opportunistic pathogen Malassezia pachydermatis causes bloodstream infections in preterm infants or individuals with immunodeficiency disorders and has been associated with a broad spectrum of diseases in animals such as seborrheic dermatitis, external otitis and fungemia. The current approaches to treat these infections are failing as a consequence of their adverse effects, changes in susceptibility and antifungal resistance. Thus, the identification of novel therapeutic targets against M. pachydermatis infections are highly relevant. Here, Gene Essentiality Analysis and Flux Variability Analysis was applied to a previously reported M. pachydermatis metabolic network to identify enzymes that, when absent, negatively affect biomass production. Three novel therapeutic targets (i.e., homoserine dehydrogenase (MpHSD), homocitrate synthase (MpHCS) and saccharopine dehydrogenase (MpSDH)) were identified that are absent in humans. Notably, L-lysine was shown to be an inhibitor of the enzymatic activity of MpHCS and MpSDH at concentrations of 1 mM and 75 mM, respectively, while L-threonine (1 mM) inhibited MpHSD. Interestingly, L- lysine was also shown to inhibit M. pachydermatis growth during in vitro assays with reference strains and canine isolates, while it had a negligible cytotoxic activity on HEKa cells. Together, our findings form the bases for the development of novel treatments against M. pachydermatis infections.


Assuntos
Dermatomicoses/microbiologia , Proteínas Fúngicas/antagonistas & inibidores , Fungemia/microbiologia , Lisina/farmacologia , Malassezia/crescimento & desenvolvimento , Treonina/farmacologia , Animais , Linhagem Celular , Dermatomicoses/tratamento farmacológico , Dermatomicoses/veterinária , Relação Dose-Resposta a Droga , Fungemia/tratamento farmacológico , Genes Essenciais , Homosserina Desidrogenase/antagonistas & inibidores , Humanos , Malassezia/efeitos dos fármacos , Oxo-Ácido-Liases/antagonistas & inibidores , Sacaropina Desidrogenases/antagonistas & inibidores
7.
Appl Microbiol Biotechnol ; 104(8): 3529-3540, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32103313

RESUMO

Malassezia globosa is an opportunistic pathogen that causes various skin disorders, which disturbs people's life all the time, and conventional drugs are not completely satisfactory. Bacillomycin D (BD), an antifungal lipopeptide, could inhibit various fungi growth. However, the reports about its effect on M. globosa were not found yet. In this study, we showed that BD and BD-C16 (fatty acid chain had sixteen carbon atoms) completely inhibited growth of M. globosa at concentration of 64 µg/ml in 15 h, which was confirmed with the observation of irregular morphological change of M. globosa treated with BD. Significantly, the study on the working mechanism showed that BD induced cell death by changing cell membrane permeability and thus promoting the release of cellular contents, which may be mediated by the interaction between BD and ergosterol from membrane. Further study showed that BD reduced the overall content of cellular sterol, and interestingly, the expression of some genes involved in membrane and ergosterol synthesis were significantly upregulated, which was likely to be a feedback regulation. Besides, we found that BD had additive and synergistic effects with ketoconazole and amphotericin B, respectively, on inhibition of M. globosa, suggesting that combination use of BD with other commercial drugs could be a promising strategy to relieve skin disorders caused by M. globosa. KEY POINTS: • BD could efficiently inhibit the growth of M. globosa. • BD increases cell membrane permeability and thus promotes the release of cellular contents. • BD has additive or synergistic effect with other antifungal drugs.


Assuntos
Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Malassezia/efeitos dos fármacos , Malassezia/crescimento & desenvolvimento , Ergosterol/farmacologia , Testes de Sensibilidade Microbiana , Sorbitol/farmacologia
9.
Microbiology (Reading) ; 166(3): 288-295, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31860440

RESUMO

Malassezia is a lipophilic cutaneous commensal yeast and associated with various skin disorders. The yeast also causes bloodstream infection via intravascular catheters and can be detected even in human gut microbiota. Ambient pH is one of the major factors that affect the physiology and metabolism of several pathogenic microorganisms. Although dynamic changes of pH environment in different parts of the body is a great challenge for Malassezia to confront, the role that ambient pH plays in Malassezia is largely unknown. In this study, we investigated the impact of ambient pH on physiology and expression of lipases in M. furfur grown under different pH conditions. The yeast was able to grow in media ranging from pH 4 to 10 without morphological alteration. Elevation in pH value enhanced the extracellular lipase activity but decreased that of intracellular lipase. The qPCR results revealed that a set of functional lipase genes, LIP3-6, were constitutively expressed regardless of pH conditions or exposure time. Based on the data, we conclude that the external pH plays a promotional role in the secretion of lipases but exerts less effect on transcription of the genes and morphology in M. furfur.


Assuntos
Concentração de Íons de Hidrogênio , Lipase/metabolismo , Malassezia , Expressão Gênica , Genes Fúngicos , Lipase/genética , Malassezia/crescimento & desenvolvimento , Malassezia/metabolismo
11.
Chem Res Toxicol ; 32(11): 2238-2249, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31647221

RESUMO

Malassezia furfur isolates from diseased skin preferentially biosynthesize compounds which are among the most active known aryl-hydrocarbon receptor (AhR) inducers, such as indirubin, tryptanthrin, indolo[3,2-b]carbazole, and 6-formylindolo[3,2-b]carbazole. In our effort to study their production from Malassezia spp., we investigated the role of indole-3-carbaldehyde (I3A), the most abundant metabolite of Malassezia when grown on tryptophan agar, as a possible starting material for the biosynthesis of the alkaloids. Treatment of I3A with H2O2 and use of catalysts like diphenyldiselenide resulted in the simultaneous one-step transformation of I3A to indirubin and tryptanthrin in good yields. The same reaction was first applied on simple indole and then on substituted indoles and indole-3-carbaldehydes, leading to a series of mono- and bisubstituted indirubins and tryptanthrins bearing halogens, alkyl, or carbomethoxy groups. Afterward, they were evaluated for their AhR agonist activity in recombinant human and mouse hepatoma cell lines containing a stably transfected AhR-response luciferase reporter gene. Among them, 3,9-dibromotryptanthrin was found to be equipotent to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as an AhR agonist, and 3-bromotryptanthrin was 10-times more potent than TCDD in the human HG2L7.5c1 cell line. In contrast, 3,9-dibromotryptanthrin and 3-bromotryptanthrin were ∼4000 and >10,000 times less potent than TCDD in the mouse H1L7.5c3 cell line, respectively, demonstrating that they are species-specific AhR agonists. Involvement of the AhR in the action of 3-bromotryptanthrin was confirmed by the ability of the AhR antagonists CH223191 and SR1 to inhibit 3-bromotryptanthrin-dependent reporter gene induction in human HG2L7.5c1 cells. In conclusion, I3A can be the starting material used by Malassezia for the production of both indirubin and tryptanthrin through an oxidation mechanism, and modification of these compounds can produce some highly potent, efficacious and species-selective AhR agonists.


Assuntos
Alcaloides/síntese química , Biomimética/métodos , Indóis/química , Malassezia/metabolismo , Quinazolinas/síntese química , Receptores de Hidrocarboneto Arílico/metabolismo , Alcaloides/química , Alcaloides/farmacologia , Peróxido de Hidrogênio/farmacologia , Indóis/síntese química , Indóis/farmacologia , Malassezia/crescimento & desenvolvimento , Estrutura Molecular , Quinazolinas/química , Quinazolinas/farmacologia
12.
Mycoses ; 62(10): 932-936, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31278884

RESUMO

The immediate immune response developed by the keratinocytes against Malassezia yeasts has been addressed yielding conflicting results. This study aims the assessment of cytokines and antimicrobial peptides gene expression elicited by M. sympodialis and M. furfur once in contact with a reconstructed human epidermis. A yeast suspension was prepared in RPMI 1640 medium (Sigma-Aldrich, St. Louis, MO) supplemented with Tween 60 and oleic acid to obtain approximately 1 × 106 cells in a volume of 100 µL. Clinical isolates of M. sympodialis (from pityriasis versicolor) and M. furfur (from seborrhoeic dermatitis) were inoculated, separately, onto a reconstructed human epidermis. A distinct expression pattern was found between the two tested species, with a tendency for overexpression of pro-inflammatory cytokines very soon after infection, whereas no significant expression or gene downregulation was often noticed following 24 and 48 h of incubation. A possible Malassezia species-dependent immune response pattern is highlighted.


Assuntos
Epiderme/imunologia , Epiderme/microbiologia , Interações Hospedeiro-Patógeno , Queratinócitos/imunologia , Queratinócitos/microbiologia , Malassezia/crescimento & desenvolvimento , Malassezia/imunologia , Peptídeos Catiônicos Antimicrobianos/análise , Citocinas/análise , Dermatomicoses/microbiologia , Dermatomicoses/patologia , Humanos , Modelos Teóricos
13.
Cell Host Microbe ; 25(3): 377-388.e6, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30850233

RESUMO

Inflammatory bowel disease (IBD) is characterized by alterations in the intestinal microbiota and altered immune responses to gut microbiota. Evidence is accumulating that IBD is influenced by not only commensal bacteria but also commensal fungi. We characterized fungi directly associated with the intestinal mucosa in healthy people and Crohn's disease patients and identified fungi specifically abundant in patients. One of these, the common skin resident fungus Malassezia restricta, is also linked to the presence of an IBD-associated polymorphism in the gene for CARD9, a signaling adaptor important for anti-fungal defense. M. restricta elicits innate inflammatory responses largely through CARD9 and is recognized by Crohn's disease patient anti-fungal antibodies. This yeast elicits strong inflammatory cytokine production from innate cells harboring the IBD-linked polymorphism in CARD9 and exacerbates colitis via CARD9 in mouse models of disease. Collectively, these results suggest that targeting specific commensal fungi may be a therapeutic strategy for IBD.


Assuntos
Colite/patologia , Colite/fisiopatologia , Doença de Crohn/patologia , Doença de Crohn/fisiopatologia , Trato Gastrointestinal/microbiologia , Malassezia/crescimento & desenvolvimento , Malassezia/isolamento & purificação , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Camundongos
15.
Mycoses ; 62(7): 597-603, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30636018

RESUMO

BACKGROUND: Malassezia yeasts produce bioactive indolic substances when grown on L-tryptophan agar. A panel of these substances was tested against commensal and opportunistic fungi, the Minimum Inhibitory Concentration (MIC) was determined and the potential for in loco antifungal activity on the skin was assessed. MATERIALS AND METHODS: Eight indoles were included (malassezin, pityriacitrin, indirubin, indolo[3,2-b]carbazole, 6-formylindolo[3,2-b]carbazole, tryptanthrin, 6-hydroxymethylindolo[3,2-b]carbazole and 6-methylindolo[3,2-b]carbazole) and were tested against 40 fungal strains [yeasts: Malassezia spp.(N = 9); Cryptococcus spp.(N = 10); Candida spp.(N = 7); Yarrowia lipolytica(N = 1); Exophialla dermatitidis (N = 2); moulds: Aspergillus spp.(N = 7); Fusarium spp.(N = 2); Rhizopus oryzae(N = 2)]. The concentration of 5/8 of the tested indoles on diseased skin was calculated from published data. Kruskal-Wallis and Mann-Whitney U tests were employed for group susceptibility evaluation in 33 strains. RESULTS: The MIC range was 0.125-32 µg/mL, and the median log2 MIC was four. Indirubin was the most potent antifungal agent and differed significantly from the others. The highest median MIC was found for FICZ. Malassezia with Candida strains were more susceptible compared to Cryptococcus and Aspergillus, and this inhibitory activity was predicted to be valid also on human skin. CONCLUSIONS: Malassezia yeasts produce indolic species that inhibit an array of clinically significant yeasts and moulds.


Assuntos
Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Meios de Cultura/química , Fungos/efeitos dos fármacos , Indóis/isolamento & purificação , Indóis/farmacologia , Malassezia/crescimento & desenvolvimento , Humanos , Malassezia/metabolismo , Testes de Sensibilidade Microbiana
16.
Mycoses ; 61(12): 954-958, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30106183

RESUMO

We report a malasseziosis model in immunocompromised Swiss mice. For this model, the mice were immunosuppressed with a combination of cyclophosphamide at 150 mg/kg and hydrocortisone acetate at 250 mg/kg. Two groups were formed according to the site of inoculation. Dermatitis group received an intradermal injection of 5 × 106 cell/mouse at a shaved dorsal region, while the otitis group received the same inoculum in the middle ear. Five animals/group were euthanised at different times, and the skin and ear were histopathologically analysed. During the first euthanasia, which occurred after inoculation, microscopic examination showed that all mice presented budding yeast-like in a tissue sample. The presence of yeasts decreased over time being undetected on the 17th day (dermatitis group) and the 21st day (otitis group) after inoculation. This is the first murine model for malasseziosis that can be useful for evaluating new treatment approaches.


Assuntos
Dermatomicoses/microbiologia , Dermatomicoses/patologia , Modelos Animais de Doenças , Malassezia/crescimento & desenvolvimento , Otite Média/patologia , Animais , Ciclofosfamida/administração & dosagem , Feminino , Histocitoquímica , Hidrocortisona/administração & dosagem , Hospedeiro Imunocomprometido , Imunossupressores/administração & dosagem , Injeções Intradérmicas , Camundongos , Otite Média/microbiologia
17.
Lett Appl Microbiol ; 67(5): 497-505, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30099746

RESUMO

A healthy skin provides a protective barrier against pathogenic micro-organisms. Recent studies have shown that probiotics, as those of Bifidobacterium genus, could act beneficially in dermatology, both when ingested and by topical use. In the present study, we evaluated by in vitro antagonism assays and using two skin cell lines the potential of four strains of Bifidobacterium spp. Among the four bifidobacteria, Bifidobacterium longum 51A was the only one able to inhibit the growth of the eight pathogenic indicators tested. Production of some cytokines and extracellular matrix proteins was determined when ccc or inactivated cells of the bifidobacteria were incubated with keratinocyte and/or fibroblast cell cultures. Significant results were observed only for IL-6, IL-8 and IL-18 production, and inactivated Bifidobacterium pseudolongum 1191A was the only one which significantly stimulated collagen production, whereas lumican was stimulated by treatments with live Bifidobacterium bifidum 1622A , B. longum 51A and B. pseudolongum 1191A . Highest adhesion and internalization capabilities were observed with B. bifidum 1622A and Bifidobacterium breve 1101A . Concluding, B. longum 51A was highlighted for its antagonistic capacity and B. bifidum 1622A and B. pseudolongum 1191A for stimulating the production of cytokines and proteins of the extracellular matrix. SIGNIFICANCE AND IMPACT OF THE STUDY: The skin is the first line of defence against invasive micro-organisms, and its local microbiota provides additional protective functions based on antagonism against pathogenic micro-organisms and immunomodulation. Based on in vitro assays using Bifidobacterium spp. we demonstrated the antagonistic potential, as well as capacity in stimulating the production of cytokines and proteins of the extracellular matrix that these bacteria may exert on skin cells. This positive influence suggests the use of a consortium of these bifidobacteria in a topical product for dermatological treatments.


Assuntos
Antibiose/fisiologia , Bifidobacterium/metabolismo , Citocinas/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Probióticos/metabolismo , Pele/microbiologia , Bifidobacterium/classificação , Candida albicans/crescimento & desenvolvimento , Linhagem Celular , Humanos , Malassezia/crescimento & desenvolvimento , Propionibacterium acnes/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus epidermidis/crescimento & desenvolvimento
18.
Mycopathologia ; 183(6): 893-903, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29946996

RESUMO

Dandruff is a common scalp condition causing both a discomfort and an undesired social image. Various studies dating from early 1900s have investigated the condition, but understanding of underlying mechanisms and etiology of the condition is still in its infancy. Formation of dandruff is a common but complex event which has been associated with numerous causal factors. Physiological conditions such as pH, water content, or sebum secretion are some of the host-related factors. An imbalance between these factors can disturb the physiological equilibrium of the scalp that can lead to dandruff formation. However, severity of the condition is strongly related to the lipophilic yeast of the skin microbiota, Malassezia spp. On the other hand, there are recent publications highlighting the role of other scalp microbiota members on dandruff formation. This review investigates the processes leading to the formation of dandruff to provide an etiological description of the condition, with a focus on Malassezia spp.


Assuntos
Caspa/etiologia , Caspa/patologia , Dermatomicoses/etiologia , Dermatomicoses/patologia , Malassezia/crescimento & desenvolvimento , Humanos
19.
Med Mycol J ; 59(2): E25-E30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29848908

RESUMO

The use of embryonated egg as an alternative in the study of the pathogenesis of fungi is evolving. Although murine models are the "gold standard," embryonated egg models are also used to screen determinants of virulence among fungi species. This study was aimed at determining the virulence potential of Cryptococcus gattii strains R265, R272, and EJB18, and Malassezia sympodialis using chorioallantoic membrane (CAM) of embryonated egg. At a concentration of 107 cfu/ml, C. gattii R272 was more virulent than R265 in the egg model, while EJB18 had low virulence. The CAM model supported the growth of Malassezia sympodialis strain and induced the formation of hyphae. The formation of lesions by the organism and its re-isolation from CAM suggest that the model can be used for evaluating the virulence of C. gattii. Histopathology of CAM from both strains also revealed massive disruption of CAM. This study suggests that embryonated egg is a useful alternative tool to pre-screen Cryptococcus gattii strains to select strains for subsequent testing in murine models and could also be a potential medium for studying the hyphal growth in Malassezia species.


Assuntos
Membrana Corioalantoide/microbiologia , Cryptococcus gattii/patogenicidade , Animais , Embrião de Galinha , Galinhas , Cryptococcus gattii/crescimento & desenvolvimento , Malassezia/crescimento & desenvolvimento , Malassezia/patogenicidade , Camundongos , Virulência
20.
J Mycol Med ; 28(3): 486-491, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29753721

RESUMO

BACKGROUND: Malassezia furfur is lipodependent yeast like fungus that causes superficial mycoses such as pityriasis versicolor and dandruff. Nevertheless, there are no standard reference methods to perform susceptibility test of Malassezia species yet. AIMS: Therefore, in this study, we evaluated the optimized culture medium for growth of this lipophilic yeast using modified leeming-Notman agar and colorimetric resazurin microtiter assay to assess antimycotic activity of fluconazole against M. furfur. RESULTS: The result showed that these assays were more adjustable for M. furfur with reliable and reproducible MIC end-point, by confirming antimycotic activity of fluconazole with MIC of 2µg/ml. CONCLUSION: We conclude that this method is considered as the rapid and effective susceptibility testing of M. furfur with fluconazole antifungal activity.


Assuntos
Antifúngicos/farmacologia , Fluconazol/farmacologia , Malassezia/efeitos dos fármacos , Oxazinas/química , Xantenos/química , Colorimetria/métodos , Meios de Cultura/química , Dermatomicoses/microbiologia , Humanos , Malassezia/crescimento & desenvolvimento , Malassezia/fisiologia , Testes de Sensibilidade Microbiana/métodos , Tinha Versicolor/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...